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A DESIGN METHOD FOR AN OPTIMAL ATTITUDE REGULATOR 

FOR A SPINNING SPACE STATION 

By Paul S. Rempfer 
Langley Research Center 

SUMMARY 

A study was made to show how a method in optimal control could be used in the 
design of a linear-feedback attitude regulator for a spinning space station. The design 
method is for linear systems, and the regulator, operating cyclically, minimizes a final 
e r r o r  and uses  a fixed amount of control effort in each cycle of operation. 

The resulting optimal feedback gains for the optimal regulator are computed and 
presented. The gains are time-varying and complex. For  this reason a suboptimal 
regulator with less complex time-varying gains is designed on the basis of the optimal 
system. In addition, for  comparison purposes, a standard constant-gain regulator is 
designed. Digital simulations of all three regulators a r e  presented. It is shown that the 
two time-varying-gain regulators require a significantly smaller peak control torque than 
the constant-gain regulator. 

INTRODUCTION 

In the future, it may be desirable to place a large manned space station in orbit 
about the earth in order to carry out various extended orbital missions. In order to pro
vide the occupants with an artificial gravity and to provide some attitude stabilization, 
the station may be spun about one of its principal axes. In reference 1, an optimal regu
lator control law for linear systems was derived. The optimal regulator operates cycli
cally and minimizes a final-error magnitude while using a fixed amount of control energy 
in each cycle of operation. The method is based on the optimal linear regulator theory 
of reference 2. The present paper shows how this method could be used in the design of 
an attitude regulator fo r  a large spinning space station. 

SYMBOLS 

Measurements for the present investigation were taken in the U.S. Customary System 
of Units. Equivalent values are indicated parenthetically in the International System (SI). 
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ii 4 X 4 positive definite symmetric matrix determining relative weighting of i 
state variables in terminal-error criterion function 

-
a positive scalar  design parameter in weighting matrix A 

N 

B 4 X 4 positive definite symmetric matrix determining outer hyperellipsoid 

D 
-

4 X 4 positive definite symmetric matrix determining inner hyperellipsoid 

E fixed value of control effort 

e - unit vector directed along desired orientation of space- station spin axis 

N 


F 4 X 4 matrix determined by dynamics of spinning space station 


-
g 4 X 1 vector-matrix determined by dynamics of spinning space station 

f; 4 X 1vector-matrix of feedback gains 

hl,h2,h3,h4 gains in q, r, CY, and 6, respectively 

I 

transverse moment of inertia with Iy = Iz, slug-foot2 (kilogram-meter2) 

moments of inertia about principal station X-, Y-, and Z-axes, respectively, i
I 

slug-foot2 (kilogram-meter2) ! 
! 
! 
I
4 X 4 identity matrix !

i'

! 

unit vectors along principal X-, Y-, and Z-axes, respectively 

I 
terminal-error criterion function 1 

i 
j! 

independent constants of motion for  free- spinning space station 

any positive integer 	 11 

I 

element of matrix 5 
i 
I 

4 x 4 symmetric matrix determining a constant of motion for free-spinning ' j  
I 
I 

space station j 

I 
! 
t 

I 
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4 X 4 solution matrix defined by equation (17) 

4 x 1 adjoint variable vector-matrix 

angular velocities about principal X-, Y-, and Z-axes,  respectively, 
radians/ second 

PO positive constant spin rate of space station about X-axis, radians/second 

S Laplace transform variable 

t time, seconds 

T fixed operating t ime for each cycle, seconds 

TY control torque applied about Y-axis, foot-pounds (meter-newtons) 

U normalized control input defined in equation (lb), radians/second2 

V constant of motion for free-spinning space station 

principal space- station axes 

-
X 4 X 4 solution matrix for equations of motion for optimally controlled system, 

defined by equation (22) 

-
X 	 4 X 1 state-variable vector-matrix defined in equation (lb) 

initial state of spinning space station 

angles defining angular misalinement of space station, radians 

x positive sca la r  design parameter arising from control effort constraint 

(5 	 dummy sca la r  variable of integration 

dummy sca la r  variable, T - t 

transition matrix for uncontrolled system 
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62 total inertial angular velocity of space station, radians/ secondi
i ct! frequency defined in equation (Ib), radians/second 

di _. derivative with respect to time
dt 

Above a variable, a tilde denotes a 4 x 4 matrix, a bar denotes a 4 x 1vector
matrix, and an arrow denotes a vector. Double subscripts on sca la rs  denote elements 
of a matrix. A prime denotes the transpose of a matrix, and a minus-one superscript 
denotes the inverse of a matrix. Superscript o denotes optima! system, superscript s 
denotes suboptimal system, and superscript c denotes constant-gain system. Sub
script may denotes a maximum value. The symbol L\ means "is by definition," and 

I 

the symbol E means "is identically for all time." 

PRELIMINARY REMARKS 

A possible configuration for a spinning space station is shown in figure I, where 
X. Y, and Z denote the principal station axes. The station is assumed to be spinning 
about the X - a ~ i swith a constant rate po; hence, X is referred to as the spin axis. 
The r a t e s  about the remaining two axes, Y and Z, are denoted q and r, respec
tively. The orientation in inertial space of the unit vector e' is that desired for the 
spin axis, and e and p measure t h e  misalinement of the station spin axis from e .  -c 

The angle a! Lies in the F'Z-plane and the angle f3 l ies in the XY-plane. 

The spinning space station represents a neutrally stable system. Xf it receives an 
impulsive disturbing torque, i t s  spin axis becomes misaIined and moves so as to sweep 
out a cone which, in general, is not centered about g. In this study, the station is 
assumed to be continually subject to small disturbances which eventually result in an 
undesirably large misalinement. The object of the regulator is to correct  this misaline
ment in an efficient manner. 

It is desired that the regulator perform its job with the least amount of effort. For  
this reason, as long as the misalinement is small the regulator takes no action. Only 
when the misalinement reaches an unacceptable le~7eldoes the regulator operate. At that 
time, the regulator acts to reduce both the rates, q and r, and the angles, cy and p. 
The regulator operates for a prescribed amount of time and then shuts down until the 
per  sist ent disturbance s again cause an unacceptable misalineinent . 

A control torque about the Y-axis of the space station supplies the regulator 
"muscle." Any torque-producing devices capable of producing continuously varying torque 
magnitudes, such as control moment gyros or reaction wheels, could be used. Ordinarily, 
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in  the design of a regulator, -aconstant-gain linear-feedback law would be specified and 
standard Laplace transform techniques used to find the gains. In  this study, however, a 
theory in  optimal control is used to provide time-varying gains in  order to reduce the 
peak magnitude of the torques to  a value lower than that required by a constant-gain sys
tem. This reduction would ease the demands on the torque-producing device and con
ceivably could reduce its weight and power requirement. 

The optimal regulator and its behavior are discussed herein. Its response is com
pared with that of a simplified suboptimal regulator and with that of a constant-gain sys
tem. All the systems considered are linear, and no control saturation is considered. 

ANALYSIS 

Design of Optimal Regulator 

The equations of motion for  the spinning station are derived in appendix A by the 
method used in reference 3. Since the optimal regulator is most simply studied in  
vector-matrix notation, the equations of motion are presented in  that form as 

S&+& 

dt  

where 

_ - 
-w 0 0 

0 0 0 
z p-

CY 0 0 Po 
P1 -1 

-PO 0 -

Eg 	
0:I0 


In equation (lb) Ty denotes the control torque about the Y-axis, Ix denotes the 
moment of the inertia about the X-axis, and I denotes the moment of inertia about both 
the Y- and Z-axes. The values for  the parameters used i n  this study are as follows: 

Ix, slug-ft2 (kg-m2) . . . . . . . . . . . . . . . . . . . . . . . .  1.5 x lo7 (2.0337X lo7) 
I, slug-ft2 (kg-m2) . . . . . . . . . . . . . . . . . . . . . . . . .  1.0 x lo7 (1.3558 X lo7) 
po, rad/sec . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  0.314 
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The theory used to  design the regulator is presented in reference 1. In the optimal 
theory the activation criterion for the regulator is dependent not only on the misaline
ment angles, but on the angular rates as well. Specifically, .the activation criterion is a 
positive definite quadratic function of all the components of the state vector. Thus, the 
regulator takes action whenever the state has reached some four-dimensional ellipsoid 
in state space and operates to drive the state toward the origin. As a result, the state is 
kept within this hyperellipsoid. Each time the regulator is activated i t  remains in opera
tion for  a fixed preset amount of time and then shuts down; thus, there is no need for  an 
inner dead band to shut the regulator off. The equation for the hyperellipsoid is given by 
the optimal theory; and, although the regulator shutdown is governed by time, the optimal 
theory also gives the equation for a second hyperellipsoid which is inside the f i r s t  and 
to  which the state is driven on each operation. The size and shape of both the inner and 
outer hyperellipsoids are discussed subsequently. 

Each time the regulator acts, the control torque is governed by a linear-feedback 
control law which is optimal in that it minimizes a terminal-error function 

where = > 0 (i.e., J is positive for any nonzero X(T)) and where T is the fixed 
operating time, while using a given amount of control effort 

T 
E = lou2(t)dt (3) 

Although the constraint on control effort does not imply a constraint on peak control 
magnitude, it indirectly causes such a constraint since the control is oscillatory and 
periodic. 

The first step in applying the design technique is to choose the weighting matrix 
for  the terminal e r r o r  J. Next the optimal feedback control law is found as a function 
of certain design parameters available to the designer. The third step is to solve for the 
equations for the inner and outer hyperellipsoids. These hyperellipsoids are dependent 
on the same parameters as the control law. Finally the designer chooses the design 
parameters so that the inner and outer hyperellipsoids satisfy the performance require
ments of the regulator. These steps are now followed for the space-station problem. 

Choice of weighting matrix___ .- It can be shown that since the station is neutrally 
stable there is a matrix 5 = k' such that, with no control or disturbance acting, the 
motion of the station satisfies the condition 

1 - 1
V h- z x (t)Mx(t) Constant (4) 
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Because it satisfies this condition, the quadratic form V is called a constant of motion 
for  the uncontrolled system. If this quadratic form is positive definite, it makes an ideal 
choice for the terminal-error function J, inasmuch as, when J is minimized and the 
regulator is shut down, except for small disturbances, J remains at its minimized value. 
The matrix k is then considered as a choice for x. 

The matrix k is easily found by taking the derivative of V and utilizing the 
equation for the uncontrolled system 

&-= FX
dt 

with the result 

dt  
v = f 3(t)I-jtk + k&(t) = 0 

u t  -
The fact that F M + k E  is symmetric and equation (6) is t rue for  all values of %(t) 
implies that 

E'GI+GIE= 0 

This equation is solved in appendix B with the result 

0 0 -1 

L -l 
0 0 1.5P0 

where the element Mll is an arbitrary constant. If the quadratic form V is written 
out, the result is 

It should be noted that, since V is a constant of the motion of the uncontrolled system 
for any value of Mll, the functions 

are independently constants of the uncontrolled-system motion. This fact is used 
subsequently. 
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Before & may be used as in the e r r o r  function it must be tested for  positive 
definiteness. With a useful theorem in reference 4 it is found that, for all positive a, 
where 

a g 3M11P0 - 2 > 0 (12) 

is positive definite. The parameter a is introduced here  in order  to simplify 
results presented subsequently. Since 5 is positive definite, it may now be used as the 

weighting matrix. From equation (2) the terminal-error  function may then be written 
(for any a > 0) as 

From equation (13) it can be seen that the parameter a weights the relative importance 
of the ra tes  over the angles in  the e r r o r  function. The parameter a is used subse
quently as a design parameter.  

Determination -of the optimal control law.- First, the adjoint vector p, which has~ -~ - _  

the same dimension as (i.e., four), is introduced. The adjoint equations a r e  then 
written as 

(14) 

The theory presented in reference 1 indicates that the optimal control is of the form 

1 - 1 

uO(t) = x g p(t) (15) 

where is another positive design parameter which a r i s e s  from specifying the amount 
of control effort. Substituting the optimal control into equation (la) results in 

X(0) = X o  J 
By solving equation (16) and the adjoint equations together, the optimal control may be 
found as a function of t ime alone. However, the optimal control as a function of time 
alone is an optimal open-loop control and not the optimal closed-loop control law desired. 
In order  to obtain the desired feedback law, 5 is determined in te rms  of X by intro
ducing two solution matrices. 
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The first solution matrix is for the adjoint equation (14)relating c(t) to %(T) and 
is denoted F(T - t). This matrix is 4 X 4 and each column satisfies the adjoint equation 
so that 

d 5  - t) = -F P(T - t)
dt 

$0) = ?i J 
3 	 From the terminal conditions on fI and the equation linearity, the vector 5 may now 

be written as 

t p(t) = $(T - t)x(T) (18) 

Substituting the vector fI into equation (16)results in 

1 --'@ = gZ x gg P(T dt 

jz(0) = 2, J 
This is an equation for the optimally controlled system in t e rms  of its initial and final 
states . 

Let Z(T - t) denote the transition matrix for the uncontrolled system so that 

dZ - t) = ?Z(T - t)
dt 

Z(0) = T 
With Z(T - t), the solution to equation (19),written in  t e rms  of the final state as the sum 
of its uncontrolled and controlled response, is 

%(t)= Z(T - t)x(T) + @(T - t - o)gg'G(o)%(T)do 

The Z(T) is then taken outside the integral and factored out of the two t e r m s  to give 

1 

Z(T - t -

By denoting the quantity within the brackets as %(T - t), the second solution matrix, 
equation (22) is rewritten 

?(t) = %(T - t)Z(T) (23) 
It is noted that although %(T - t) does not satisfy the requirements for  being the general 
transition matrix for the optimally controlled system equations, it is shown i n  reference 2 

9 




- - 

to be nonsingular. Thus equation (23) may be solved for Z(T) as 

Z(T) F %-l(T - t)Z(t) (24) 

and %(T) may then be substituted into equation (18) to give as a function of % as 
desired. The resulting equation is 

c(t) = F(T - t)%-l(T - t)%(t) (2 5) 

When p(t) is used in the optimal open-loop control, the optimal closed-loop control law 
is found to be t 

1 - 7 
u0(t) = - -x g P(T - t)?l(T - t)%(t) (26) 

From this law the vector of time-varying gains may be written as those elements multi
plying the elements of %(t). This vector is denoted io(t) and is written in row-vector 
form as 

Ko7(t)= - Ix g 7 R T- t)%-l(T - t) (27) 

so that the optimal feedback control law is 

uo(t) = hlo(t)q + h20(t)r + h30(t)cu + h40(t)p (28) 

It now remains to explicitly solve for the solution matrices of the space station. By 
letting T = T - t and taking the Laplace transform of equation (17) with respect to 

d d
T and by noting that 	-E d7) the resulting equation isdt 

sF(s) - x = F7F(s) (29) 

where s denotes the Laplace variable. This equation is then solved for F(s) to give 

F(s) =.(s' i  - F7)-% (30) . 
Since F(T - t) is not used alone, but only as F7(T - t)g, and since has only one non
zero component, the matrix multiplication is carr ied out before inverting the Laplace 
transform and thus the inversion is greatly simplified. The result is 

a cos 0.5po(T - t) + 2 cos  po(T - t) 

a sin 0.5po(T - t) - 2 sin po(T - t)
- 7  

P (T - t)g = 
3 ~ 0  -3p0 sin po(T - t) 

1 [  -3p0 COS po(T - t) I (31) 

where a can be defined as in equation (12). 
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With F'(T - t)g known, the expression for %(T - t) can now be transformed with 
respect to T with the result  

N -1 - - 1 - - 1 
%(s)= (s? + F) + i ( s 7  + F) gg P(s) (32) 

dwhere (s? + 
-
F) 
-1 

is seen from equation (20) to be g(s).  (Again, note that -d = - z.)dt 
In order to avoid the laborious Laplace inversion and subsequent matrix inversion, rather 
than solving for  ?i(T - t) 	 analytically, the differential equation 

-
G ( T  - t) = F%(T - t) - $ EE'F(T - t)\
dt  (33) 

fi(0) = Y J 
w a s  integrated and the matrix inverse taken on a digital computer to obtain %-l(T - t). 
With the digital solution, the time-varying gains could be found by using specified values 
for the design parameters a and h and the operating time T. 

Equations fo r  inner and outer hyperel1ipsoids.- A s  shown in  reference 1, the equa~~ 

tion for the inner hyperellipsoid is 

~ ' ( T ) ~ G ( T )E (34)= 

where E is the magnitude of the control effort and 6 = 6' > 0 is a 4 X 4 matrix found 
by carrying out the integration 

Since the elements of F ' ( T ) ~are periodic, the integration is simplified by choosing the 
operating time 

T = - 27F 2 = 402 (2  = 1, 2, 3, . . .) (36)
0. 5p0 

The result is 

0 

D =  36h;po2 [:;:0 9p02 o 
2 

(37) 
N 


0 9p0 
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The equation for the inner hyperellipsoid is then written as 

E = A I u ( q 2  +.r2) + 1.5p0(a!2 + p2) + 2 ( m  6X2p0 6po 

The quadratic form on the right side of this equation is a constant of motion of the uncon
trolled system since it, like J, is simply a linear combination of J1 and J2. Thus, 
when the state is deposited on the inner hyperellipsoid, except for  the disturbances, it 

c 
stays there. 

As shown in reference 1, the equation for  the outer hyperellipsoid is 
I 

%'(O)&(O) = E (39) 

where 6 = 6' > 0 and when E is a 4 x 4 matrix defined by the relation 

= ?"(T)fi%-'(T) (40) 

It can be seen that both hyperellipsoids depend on the control effort E and that the 6 
and 6 matrices depend upon the design parameters a and X and the operating 
t ime T. Hence, the hyperellipsoids may be shaped and sized with these parameters. 

Choice of the design parameters.- The first parameter chosen was the operating 
time T. In this study, T was chosen independent of hyperellipsoid considerations to 
be 240 seconds, which was considered a reasonable operating t ime since nearly the same 
space station had been satisfactorily controlled in  this time by a bang-bang controller in 
reference 5. The remaining parameters were used to  adjust the hyperellipsoids. First ,  
an approximate allowable angular misalinement of 0.1 radian was chosen. Then it was 
necessary to decide how much this misalinement should be reduced each t ime the regula
tor  was activated. A reduction factor of 10 was chosen so that the terminal misalinement 
would be about 0.01 radian. Finally, the allowable magnitude of the terminal rates was 
chosen by considering reference 5 and finding that a ratio of terminal angle to  terminal 
rate of 3.75 seconds was acceptable. Thus the approximate terminal rates would be 
0.01 rad/3.75 sec = 0.00266 rad/sec. With all these requirements, the design parameters 
were easily found. 

Since an analytic expression for  the inner hyperellipsoid (eq. (38)) was available, 
this hyperellipsoid was considered first. An angle a! at the inner hyperellipsoid of less 
than about 0.01 radian was desired. With equation (38), the point on the inner hyperellips
oid at which a! is a maximum could be found with the theory of constrained extremals. 
Then the parameters could be set so that a! would satisfy the requirement exactly. 
Rather than following this procedure herein, however, the point a! = 0.01, p = q = r = 0.0 
was chosen to  lie on the inner hyperellipsoid for  the sake of simplicity. Clearly this 
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point would not be the point of maximum angular misalinement but it was believed to be 
acceptable for the present example. Similarly, for  simplicity, q = 0.00266 rad/sec was 
chosen to lie on the inner hyperellipsoid when a! = p = r = 0. When these two sets of 
values were substituted into the equation for the inner hyperellipsoid, the two resulting 
equations were 

(240)(0.01)2 = E 
4x2 

(240)(0.00266)2(a2 + 4) = E 
36p02X2 

By substituting the value of po, the following solutions were obtained: 

a = 2.9 (43) 

The outer hyperellipsoid condition was then met by choosing E. Since no analytic 
expression for the matrix was available, E was chosen by trial and e r r o r  on a digi
tal computer. First, a small  value of E was guessed. Then X was determined from 
equation (44) and was used in equation (33) to solve for fi(T). By substituting %(T) into 
equation (40), the matrix fs w a s  computed. This matrix determined the outer hyper-
ellipsoid. Again, for simplicity, rather than using the theory of constrained extremals, 
the condition that a! = 0.1, p = q = r = 0.0 lie on this hyperellipsoid was then checked. 
Since a small value of E had been chosen, the hyperellipsoid was too small and fell 
within the checkpoint. The value of E was then successively increased until the check 
condition was met. This procedure was quite simple and required only four iterations. 
The result was 

E = 8.13 X (45) 

Thus, all the parameters were chosen and they completely fixed the two hyperellipsoids 
and the optimal feedback control law. The characteristics of the hyperellipsoids and the 

k optimal gains are now discussed. 
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Study of Optimal Regulator 

The matrix E was computed to be 

r,.,, 10-3 

1-1.80 x 10-7 

-1.43 X 

1-1.73 X 

- I - -
When the quadratic form x Bx 

-1.80 10-7 -1.43 10-7 -1.73 lo-q 
7.30 x 10-3 1.73 x 4.10 x 10-8) 

1.72 X 8.12 X 3.25 X 10-81 
(46) 

4.10 X 3.25 X 8.14 X 1 0 - 9  

ris written out, with t e r m s  of the order  o r  less neg
lected, an approximate but very close equation for the outer hyperellipsoid may be written 
as 

0.00173 4.23 q2 + r2) i-1.5p0(2  + p2) + 2 ( m  - pqg = E (47)[ (  
Like J and the inner-hyperellipsoid quadratic form, this expression is also a constant 
of the motion of the uncontrolled system since it is simply a linear combination of J1 
and J2. Although it is difficult to visualize either hyperellipsoid because they both lie 
in four-dimensional space, some information may be gained by looking at certain c ros s  
sections. (See fig. 2.) 

From either of the two hyperellipsoid equations, it can be seen that a c ros s  section 
in or  parallel to the Orp- or qr-plane is a circle. When either both the rates or  both the 
angles are zero, the ci rc le  has its largest radius and encircles the origin as shown in 
figures 2(a) and 2(b). The three points used to choose the design parameters a r e  shown 
in  these figures. From the equations, it may further be seen that c r o s s  sections in or 
parallel to the ra- o r  qp-plane are ellipses which are tilted because of the cross-product 
terms. When both p and q o r  both r and CY are zero, the ellipses a r e  at their 
largest and a r e  centered about zero as shown in figures 2(c) and 2(d). In these figures, 
it is seen that the approximate angular misalinement requirements are exceeded because 
of the tilting of the ellipses. Further study of the hyperellipsoid equations shows that the 
maximum violations of the requirements occur in these c ros s  sections. For  the present 

1problem the violations were considered acceptable. It should be pointed out that, if  they 
had not been acceptable, more conservative approximate e r r o r s  could have been chosen 
and the design process repeated once o r  twice with very little additional work. Use of 
the theory of constrained extremals previously mentioned could also have been made but 
was considered unnecessary for this study. 
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The time-varying optimal gains are presented in figure 3. The gains generally 
increase with time and there is clearly a greater dependence on q and p than on r 
and a 

Design of Suboptimal Regulator 

In applying the optimal regulator, it is necessary to  monitor the function 
0.00173(4.2351 + J2) where J1 and J 2  are the constants of the uncontrolled motion, 
which are defined in equations (10) and (11). When this monitored function reaches the 
value E = 8.13 x 10-6, the state would be on the outer hypersurface, since equation (47) 
for  the outer hyperellipsoid is satisfied, and the control would be turned on. The control 
law then uses  stored values for  the time-varying gains and the whole state vector is fed 
back. This process is complex since it involves storage and many multipliers, and there
fore a simplified suboptimal regulator was considered. 

Since the gains on CY and r for the optimal control were small, they were taken 
as zero for the suboptimal control. Thus, the dependence on CY and r was eliminated. 
Next, it can be seen in figure 3 that the q gain, although negative, is nearly proportional 
to the p gain for the entire operation. In the suboptimal control, therefore, the constant 
of proportionality was estimated and used to give 

hls = -4.23hqs (48) 

Then the time variation lay all in one gain h4". In order  to eliminate the necessity of 
storing this gain, the following simple time function approximating it was constructed: 

hqs = 0.0037 [exp(O.O085t) - 0.0077t11 (49) 

The nonzero suboptimal gains resulting from the approximations a r e  compared with the 
optimal gains in figure 4. Thus, the suboptimal control has been simplified to 

us = h4'(B - 4.23q) (50) 

Since the dependence of the control on CY and r has been eliminated, it is desir
able for  J1 and J2 to be determined without measuring CY and r. The need for 
measuring CY and r would then be eliminated completely. A possible method for such 
a determination of J1 and J 2  is presented in appendix C, although it was not actually 
simulated in this study. In all simulations the suboptimal control system was initiated 
on the outer hyperellipsoid with the same initial conditions as the optimal system. The 
behavior of the two systems is compared in the section "Results and Discussion." 
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Constant- Gain Control 

In order  to compare the optimal and suboptimal regulators with a standard constant-
gain regulator which performs the same function, a constant-gain regulator w a s  designed 
by the use of only q and p feedback as is required for  the suboptimal control. It was 
believed that the ratio of p gain to q gain used in the suboptimal control law was prob
ably a good one and so this ratio was used in the constant-gain system 

hlc = -4.23h4 C 

P 


The constant gain hqc was then found by trying values for  hqc, digitally computing the 
system response, and then comparing the resulting terminal motion with the terminal ( 1  

motion of the suboptimal system. When the terminal motions appeared equivalent, that 
value which had been used was the gain. The value in  the present study was 

h4C = 0.01 

The constant-gain feedback control w a s  then 

uc = O . O l ( p  - 4.239> (53) 

In the next section the performance of this system is compared with that of the other two 
regulators . 

RESULTS AND DISCUSSION 

Optima1 Regulator 

Figures 5 to 7 show the performance of the optimal regulator operating from vari
ous points on the outer hyperellipsoid. These points a r e  representative of the initial con
ditions the regulator might encounter. It is important to notice the constant amplitude of 
the periodic control variable evident for all three initial conditions. This constant ampli
tude is a general characteristic of the optimal regulator. Because of this characteristic, 
the maximum magnitude of control torque which the regulator requires at any time may 
be estimated. The maximum magnitude occurs when the regulator operates from initial 
conditions in  the qp-plane where the straight line of the equation 

p - 4.23q = Constant (54) 

just touches the ellipse. The points satisfying this requirement (one of which is the ini
tial condition of fig. 5) are shown in figure 2(d). The estimated maximum magnitude of 
control torque required is found to be 5200 ft-lbf (7050 m-N). 
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The constant-amplitude characteristic of the optimal control is responsible for the 
linear decay envelop of the ra tes  and angles. For  the initial conditions in  figures 5 to 7, 
the envelop indicated a time to damp to half amplitude of 130 seconds. 

Suboptimal Regulator 

Figures 8 to 10 show the performance of the suboptimal regulator operating from 
the same initial conditions as the optimal regulator in figures 5 to 7. The time histories 

e appear to be the same as for the optimal regulator during about the first 180 seconds. 
This similarity exists because the suboptimal gains approximate the optimal gains almost 

* 	 exactly for this time period. As the approximation becomes l e s s  exact, the suboptimal 
control drops slightly in amplitude. The result is that the angles and ra tes  left after the 
suboptimal regulator shuts down a r e  slightly larger  than those left by the optimal regula
tor. The difference, however, is very small. The time to damp to half amplitude is the 
same as for the optimal regulator - that is, 130 seconds; however, because the sub
optimal control amplitude drops off toward the end of each operation, the suboptimal con
trol effort is less  than the optimal control effort. For  the simulations in this study the 
value of E used by the suboptimal regulator is from 1 percent to 7 percent lower than 
that used by the optimal regulator. The dropping off of the control amplitude does not, 
however, affect the magnitude of the required control torque, which is estimated at 
5200 ft-lbf (7050 m-N), the same as for the optimal system. 

Constant-Gain Regulator 

Figures 11 to 13 show the performance of the constant-gain regulator operating 
from the same initial conditions as the optimal and suboptimal systems. The behavior 
of this regulator is the standard constant-gain behavior. The control amplitude drops off 
as the angles and r a t e s  decay and thus an exponential envelop for the variables is formed. 
It is important to note that, although the terminal rates and angles a r e  comparable to 
those of the two systems discussed previously, the time to damp to half amplitude is much 
shorter - 66 seconds. The price that the constant-gain system pays for this t ime reduc
tion is more control effort. The value of E used by the constant-gain regulator is from 
42 percent to 44 percent higher than that used by the optimal regulator. More important, 
the maximum control-torque magnitude required by the constant-gain regulator is 
13 820 ft-lbf (18737 m-N). (See fig. 11.) This value is 2.7 t imes the maximum control-
torque magnitude required by the optimal o r  suboptimal regulators. Since only terminal 
e r r o r  is of interest, this result indicates that the optimal and suboptimal regulators make 
much more effective use of a given magnitude of available control torque than does the 
constant- gain regulator . 
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CONCLUDING REMARKS 

An optimal linear-feedback regulator has been designed for the attitude control of 
a spinning space station. The optimal. regulator employs time-varying gains to make con
tinued use of its available peak control torque. In contrast, a constant-gain system uses  
its available peak control torque only in the initial phases of its control operation. Thus, 
the magnitude of the peak control torque that the optimal regulator requires is signifi
cantly lower than that required by the constant-gain system. This reduction in torque-
magnitude requirement is obtained, however, at the expense of system complexity. For 
this reason, a suboptimal system, which is much simpler than the optimal system but 
which has near-optimal performance, has been designed. The suboptimal system is more 
complex than the constant-gain system, but this complexity may be warranted in a space 
station where available control torque is at a premium. 

Langley Research Center, 
National Aeronautics and Space Administration, 

Langley Station, Hampton, Va., November 8, 1966, 
125- 19-04 -0 1-23. 
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APPENDIX A 

VEHICLE DYNAMICS 

The rate equations of motion for the spinning vehicle are simply a special case of 
Euler's dynamical equations (see ref. 6) with the following assumptions employed: 

(1)Symmetric inertia distribution, that is, Iy = Iz = I 

(2) No component of torques about the X o r  Z axes 

(3) The space-station moment of inertia about the spin axis satisfies the inequality 
Ix > I. 

With these assumptions, Euler's dynamical equations a r e  written as 

I x % = O  

dqI -- (I - IX)pr = T y  
dt 

I -- (Ix - 1)pq = 0d r  
dt 

From equation ( A l )  the spin rate is constant and is denoted po. Equations (A2) and (A3) 
may then be rewritten 

where 

dr wq = 0 
dt 

w = (%- $Po 

The angle equations a r e  written with the assumption that g is fixed in inertial 
space. With respect to the body axes, g then satisfies the equation 

where 

a= pof  + q 3  + rG  
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4 4 

and i, j ,  and k are unit vectors along the X, Y, and Z axes, respectively. From 
figure 1it may be seen that in the body-axis coordinates the vector is 

e = cos a! cos pT + cos a! sin p 3  - sin Z (A91 

Equation (A7) is then linearized by assuming that 

cos a! = 1 
sin p = p 

and that the products a!*dt’ p %! q q  and r p  a r e  small  and may be neglected. Thesedt’  
assumptions have been shown to be good for vehicles in motion with angular misaline
ments of less than 15O (see ref. 7). The resulting equations a r e  

2 + poa! = -r 

Equations (A4), (A5), ( A l l ) ,  and (A12) compose the set  of equations used in this study. 
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APPENDIX B 

SOLUTION FOR MATRIX k 

The equation which must be solved is written 
- 1 -

F M + ~ ? = O  
- 1  

where M 
-

= M . Since fi is symmetric, equation (Bl) may be rewritten 
, N f

(MF) + MF = o (B2) 

In order to use this equation, fi is set  up as 

N 

M =  
M13 M23 M33 M34 

P I 4  M24 M34 M44J 

M12 M22 M23 M24 

and multiplied by to give 
-
15 ' 0 ~ 1 2  - M13 

1zP0M22 - M23 
M F  = 

15 ' 0 ~ 2 3  - M33 

15p0M24 - M34 

-
1- - p2 oM 11 - M14 -'oM14 ' 0 ~ 1 3  

1 
- - p  oM 12 - M24 -'oM24 ' 0 ~ 2 32 

1 - - p2 oM 13 - M34 -'oM34 PoM33 

1

2 PoM 14 - M44 -PoM44 ' 0 ~ 3 4  


Then fi$ is transposed and added to itself t e rm by te rm to arrive at equation (B2). 

In equation (B2) there a r e  16 algebraic equations, not all independent, which a r e  solved to 


N 

give M. The result is 
rI M1l 0 

(B5) 

tM33/l*5 p ~  0 0 ~ 3 3J 
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where both Mll  and M33 are arbitrary constants. Notice that i% may be rewritten 
as 

-

M11/M33 0 0 - 1 p .  5p01 


0 M11/M33 1/1.5p0 0 
N 

M = M 3 3  
0 111. 5P0 1 0 

-l/l.5p0 0 0 ' J-

which shows G to be arbi t rary in the "magnitude" M33. The reason is that equa
tion (B l )  is homogeneous and thus the magnitude does not reflect any system character
istic. In this study, M33 was chosen to be 1 . 5 ~ ~in order  to avoid the fractions in 
%I.Thus, the result is 

-
M1l 0 0 -1 

N 0 M 1 l  1 0 
M =  

0 1 1. 5P0 0 

-1  0 0 1.5Pc 
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APPENDIX C 

METHOD FORDETERMINING J1 AND J2  

Since, for the suboptimal system, the dependence of the control on a and r has 
been eliminated, it is desired that J1 and J 2  be determined without measurement of 
a! and r. The need for measuring a! and r would then be eliminated completely. 
Such a determination of J1 and J2 is possible, but it requires that the disturbance 
effects be small over any 40-second beat period of the space-station motion. With this 
requirement, the equations of motion for the uncontrolled system a r e  

a= - 0 . 5 ~ ~ 1 dt 

g =0.5p0q
dt 

da - -q + POPdt 

*= -1' - p0a
dt 

From equation (Cl) it is evident that, when q is a maximum, r is zero so 

2 
J1= qmax 

If equation (11)is rewritten as 

1.5p0a+ rl2 + (1.5p0p - qY - J d  
then, with the equations of the uncontrolled motion, it may be found that 

d-(1.5p0P - q) = -p0(l.5p0a + r)dt 

so  that the second te rm within the brackets in equation (C6) is a maximum when the first 
te rm within the brackets is zero. The resulting equation is 

The function which must be monitored to determine whether the state has reached the 
outer hyperellipsoid may then be written in t e rms  of qmm and (1.5pop - 9)". 
Thus the need for a! and r sensors  in the suboptimal system is eliminated. 
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(b) Cross section i n  the qr-plane. a =  0; p = 0. 

Figure 2.- Cross sections of the inner and outer hyperellipsoids. 
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Figure 2.- Concluded. 
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Figure 3.- Time-varying optimal gains. 
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F i g u r e  4.- N o n z e r o  suboptimal gains compared w i t h  t h e  optimal gains. 
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Figure 5.- Behavior of optimal regulator operating from the init ial  condition q = 0.033, r = 0, a = 0, p = 0. 
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Figure 6.- Behavior of optimal regulator operating from the in i t ia l  condition p = 0.1, q = 0, r = 0, a = 0. 
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Figure 7.- Behavior of optimal regulator operating from the in i t ia l  condition r = 0.033, a = -0.141, q = 0, p = 0. 
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Figure 8.- Behavior of suboptimal regulator operating from the in i t ia l  condition q = 0.033, r = 0, a = 0, p = 0. 
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Figure 9.- Behavior of suboptimal regulator operating from the in i t ia l  condition p = 0.1, q = 0, r = 0, a = 0. 
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Figure 10.- Behavior of suboptimal regulator operating from the in i t ia l  condition r = 0.033, a = -0.141, q = 0, p = 0. 
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Figure 11.- Behavior of constant-gain regulator operating from the init ial  condition q = 0.033, r = 0, a = 0, p = 0. 
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Figure 12.- Behavior of the  constant-gain regulator operating f rom the  in i t ia l  condition p = 0.1. q = 0, r = 0, a = 0. 
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Figure 13.- Behavior of the constant-gain regulator operating from the init ial  condition r = 0.033, a = -0.141, q = 0, p = 0. 
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